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Abstract

In this paper we discuss an SI epidemic model with pulse removal from the infective
class at fixed time intervals with both exponential and logistic type underlying pop-
ulation dynamics. This model has a significance when dealing with animal diseases
with no recovery, or when we consider isolation in human diseases. We provide a
rigorous analysis of the asymptotic behavior of the percentage of infected individu-
als, the total number of infected individuals, and the total population in our model.
We show that periodic removal/isolation is a feasible strategy to control the spread
of the disease.

Key words: Epidemiology, Asymptotic behavior, Impulsive differential equations

1 Introduction

Mathematical methods are widely used for understanding mechanisms in the
spread of infectious diseases. Together with computer simulations, epidemic
models are very useful in explaining and testing various theories, determining
key parameters, and finding the effects of changes in the parameter values.
The high interest can be explained by the economic and societal effects of
various known epidemic diseases and the emergence of new viruses and in-
fections. Another important motivation for the development of this field is
the evaluation of various vaccination/control strategies for human as well as
animal diseases. The study of epidemics among animals has gained a lot of
attention in recent years with major outbreaks of the mad cow and hoof-and-
mouth diseases together with the spread of chronic wasting disease in the US
[9,10].

Infectious animal diseases have a great effect in the ecology and management
of wildlife and domestic animals. Sometimes the diseases among animals pose
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a great threat to public health. When there is an epidemic outbreak among
animals, a common way to control it is by destroying a fraction of the infected
population. In [10] Heesterbeek and Roberts considered a model with a fixed
culling rate v and showed its effect on the dynamics of the infected population.
However, the constant removal strategy assumes continuous culling at the
same rate, which is not a realistic approach. We propose a new model that
assumes that a fraction of the infected population is being removed at certain
fixed points in time and not continuously.

The effects of pulse removal have been studied before in relation to epidemic
models while analyzing vaccination methods [1,2,7,8], where a fixed portion of
the susceptible population was removed (i.e. vaccinated) at fixed time inter-
vals. It was shown that the infection free solution can be obtained with lower
levels of vaccination compared to the constant vaccination strategy. Our goal
is to show that pulse removal from the infected class, which can model the
actual destruction of a portion of the population or isolation from the rest of
the population, is a feasible strategy to control the disease. The control ob-
jective is to drive the number of infected individuals to zero while stabilizing
the population size or growth rate.

In section 2 we consider an SI model with exponential underlying dynamics
for the total population. The inclusion of pulse removal transforms the system
into a system of impulsive differential equations [4,5]. We establish a threshold
value p} for the removed fraction p such that for p < p the fraction of infected
individuals tends to a positive periodic function, while for p > p} this fraction
tends to 0. However, the fact that the fraction of infected individuals tends to
0 does not guarantee the eradication of the disease in a growing population.
Thus, it is of interest that we establish another threshold value, p3, which has
the property that for p > p5 the number of infected individuals tends to 0,
while the population grows. This case realizes the control objective. We also
provide a detailed analysis of the asymptotic behavior of the total population
for p < p}, and illustrate the different possible cases.

In section 3 we carry out an analogous study for an SI model with logistic dy-
namics for the total population, which may provide a more realistic approach
(3,6,11,12].

2 SI Model with Pulse Removal

We consider a common SI model with exponential dynamics for the total
population. When pulse removal is introduced in this model, we obtain the
following system:



ds BSI

dI ST >0
== —(d+ )I—i—% —pnglf(an)é(t—nT), (2)
S+I=N. (3)

Here I(t) > 0, S(t) > 0 denote the size of the infected and susceptible popu-
lation classes, respectively, and N(¢) is the total population at time ¢ > 0. b is
the birth rate, d is the death rate, while 5 denotes the contact rate and « is an
added death rate due to the disease. We consider the case when the natural
birth rate b is greater then the death rate d. In a population that is dying
out naturally, that is, if d > b, the removal does not affect the asymptotic
behavior of the system. Note that (1)-(3) implies that

dN

N —-aN—al—p S I(nT)5(t - nT). (4)

n=1

In our proposed model, the removal is applied as an impulse whenever ¢t = nT,
n = 1,2, ... The fraction p of the infective individuals is being removed from
the class, that is, I(t) decreases with proportion p whenever t = nT. We will
use the notation

IMT™)= lim I(t) and I(nT")= lim I(¢ 5
(nT") = lim I(t) and I(nT*)= lim I(2) (5)
to indicate the different limits of the solution from left and right at these
points. The sequence of impulses creates jump discontinuities in I(t), which
decreases with proportion p whenever ¢t = nT. We start the analysis by trans-
lating the model for infectious and susceptible fractions of the population.

2.1 Susceptible and Infective Individuals as Fractions of Population

We translate the given system into a model describing the behavior of s(t) =
%, i(t) = (( )) Now, s(t) and i(t) represent the percentage or fraction of the

population that are susceptible and infective, respectively.

Thus the system (1)-(3) becomes:

ds & )s(nT™)
%—b—bs— —asz—i-z 1—pz(nT) §(t —nT) (6)
Zz —(b+ Q)i+ Bsi + ai® — Tip (nT; j(gln(_nzi(“n?_))&(t —nT) (7)



with feasibility set D = {(s,7) | s > 0,i > 0,s +7 = 1}, and we define
D, =D —{(1,0)}. We note that the system is well-posed epidemiologically,
that is, if the initial conditions i and sy are in the feasibility region, then s(%)
and i(¢) will stay in D for all ¢ > 0.

Theorem 1: Consider the system of equations (6)-(7) with b > 0, f — (b+

a) > 0 and all other parameters non-negative. The following holds with p} =
1— e (B-b-0)T .

(1) If p > p} then the disease free equilibrium (s,i) = (1,0) always ezists and
it 1s globally asymptotically stable in the feasibility set D.

(2) If p < p} then there exists a unique endemic periodic solution (i*,s*) and
this solution s globally asymptotically stable in D,.

Proof: Since s(t) = 1—i(t), it is sufficient to consider the initial value problem

%: —(b+a)i + B(1— i)i + ad?
_ g:l p’(”Tl_z(;i(_nzj(f)T_)) 5(t — nT) (8)

On an interval [nT, (n + 1)T] (8) is a logistic equation in 4 and it can be
explicitly solved. We note that the assumption 5 > (b+a) guarantees that the
equation (8) without the pulse removal has two stationary solutions, i;(t) =0
and iy(t) = %, with 0 < 42(t) < 1. The trivial solution #;(¢) is unstable,
while i5(t) is asymptotically stable. If 8 < (b + «), then there are two cases:

a) If B — a > 0, then i5(¢) < 0, and in this case i;(¢) = 0 is asymptotically
stable, in particular, for any i(0) = 4y, 0 < 39 < 1, i(t) — 0 as t — oo,
where ¢ is the solution of (8) without the pulse removal. Thus the frac-
tion of infected individuals goes to zero naturally without any controlling
mechanism.

b) If 8 — a < 0, then i5(¢) > 1, and we again have that for any 0 < ip < 1,
i(t) — 0 as t — oo.

We also remark that the assumption 8 > (b+ «) is realistic in epidemiological
applications. Solving (8) on an interval [nT, (n + 1)T’| we obtain

i(nT)ef—b-a)(t=nT)
Glt) = [ rE=a) (p—r-ari—) _ 1)
14 d el (e 1)

At the removal points we have



(1-p)G((n+1)T7)
1—pG((n+1)T-)

i((n+1)T%) =

Under our assumptions this solution is well-defined and exists for all ¢ > 0.

Now, we consider the sequence of the“initial” values for each interval between
removals at i(nTt), where n = 1,2,.... We let i{(nT+) = i, and deduce a
stroboscopic map F' that satisfies

ins1 = Fiy). (10)

The map F' determines the value of i(¢) immediately after each removal at
discrete times t = nT'. Then,

(1-=p)i((n+1)T")
1—pi((n+ 1))
B (1 — p)iyelf-b-a)T

14 ﬁx‘ain(e(ﬂ*b*a” —1) — pipel-t-a)T"

in—|—1 = F(Zn)

Ifp+# & = Z‘iﬂe(l; Z)q;j;, the map F' has two fixed points

(1= p)el® ¥ — 1

i1 =0 and 75 = 55— :
ﬁfj —2(e(B=b-a)T _ 1) — pe(f~b-a)T

(11)

We analyze ¢ as a function of p. Figure 1 illustrates the general behavior of

9(P)

7 ;

(1-e®0T o)

Fig. 1.
General behavior of the function g(p)

the function ¢ = g(p). For p = 0, we have g(0) = % The function has



(B—a)eP~b=IT -1
(B—b—a)eB=b=a)T"
1. The function is always decreasing for p < p,, and, lim, , - g(p) = —oo.
The zero of the function is at p = p} = 1 — e BT < p, If p > p* then
g(p) <0 or g(p) > 1, which brings it outside the feasibility region D. Finding
the derivative of F' at the two fixed points will determine the stability of those
fixed points. We obtain

an asymptote at p, = which may or may not be less than

dF(ln) N e(ﬁfbfa)T(]_ — p)
di,  (1+ Blj;fain(e(ﬂ—b—a)T “ 1) — pinelB-b=a)T)2’

The derivative at the fixed points yields

dF(i,) N
n —(1— (B=b—a)T
din |, _;: (1=pe !
()| 1

di, P o (1 — p)e(ﬂ—b—a)T.

dF (in)
; <1
di in =i}
which implies
p>1—e Bb-a)T (12)

If condition (12) holds, then the other fixed point ¢} is not in the feasibility
set, that is, either ¢5 < 0 of 75 > 1. The above argument also shows that in
the case when p < 1 — e~ (B=0=)T % is locally asymptotically stable, while i*
is unstable.

Now, we show the global stability of the fixed points. Since,

dF(i,) elBb-aT(1 _ p)

din  (1+ (B0 1) — pie(B-b-a)T)2

>0

for any 0 < 4, < 1, we have that {F"(ig)} = {io, F(io), F(F(ig)),...} is a
monotone sequence for any initial condition ¢y. This sequence is bounded be-
tween 0 and 1 by the well-posedness of our system. Therefore, we have ob-
tained a monotone bounded sequence which has to converge to some limit L.
We proceed by finding this limit.



1 =1L (B—b—a)T
L= lim F"(io) = B ( ﬁf) ; Bba)T
n—00 1+ mL(e( )T _ 1) — pLe( @)

Solving for L we obtain the following result

(1 —p)elf—b-aT —1

ﬂlj;fa (e(B—b—a)T —1)— pe(ﬂ—b—a)T‘

If condition (12) holds then Ly ¢ D,, so Ly = 0 is the limit of {F™(4)} for
any 1ig, and thus it is a globally asymptotically stable fixed point of F(i,).
Hence in this case i(t) — 0 as t — oo for any initial condition iy € D. If
p < 1—e BT then L, is the limit of {F™(40)} and thus L, is globally
asymptotically stable in D,. Then there is a unique endemic periodic solution
i5(t) = i(t) with igp = L. This periodic endemic solution is globally asymp-
totically stable, meaning that | i(¢) — ¢5(¢) |— 0 as t — oo for any i(¢) which
solves (1)-(3). This concludes the proof of Theorem 1.

L= =0, Ly=i}=

2.2  Total Number of Infective Individuals

Now, we generalize the result from the previous section to study the behavior
of the total number of infective individuals and the total population. We go
back to the system of equations (1)-(3).

Theorem 2: Consider the system of equations (1)-(3) under the assumption
thatb >d >0, f — (a+b) > 0 and all other parameters non-negative. Then
with pi = 1 — e~B=4=T the following hold:

(1) If p > 1 — e (B=4=T the total infected population has the asymptotic
behavior I(t) — 0.

(2) If 1 — e~ B4l <« p < 1 — e~ B=d=)T the total infected population has
the asymptotic behavior I(t) — oo.

Proof: First, we consider the case when p > 1 — e~ 3=0-9)T that is, the

fraction of infected population goes to 0. By the previous theorem, we know
that under this condition, s(t) = % — 1. Then for any £ > 0 there exists ¢,

such that 1 — e < % <1 for t > to. Let to = (noT) ™. Consider,

dI ST >
%:—(d+a)I+5T—pZI(nT_)5(t—t0—”T)’ t>t (13)

n=1

with I(t9) = Iy. Under the assumption that 1 — e < % < 1 fort > ty, we
introduce



dI
dt

—(d+a)[+B(1-e)] i )o(t —to —nT) (14)

Then, I(t) > I(t) for all t > ¢, and

I(t) — IO[(l _ p)e(ﬁ(lfe)fdfa)T]ne(ﬂ(lfs)fdfa)(tfnT)’
for nT <t < (n+1)T, n > ne.

Thus, the sequence of ”initial” values at I (nT™) where n = ng,ng+1 no +2...
forms a geometric progression, which converges to 0 if (1—p)e(fl=e)=d=a)T < 1
and grows without bounds in the reverse case.

Therefore, we conclude that if p < 1 — e~ (BU=e)=d=a)T" then I(t) — oo as
t — oo. Since I(t) > I(t) for t > ty and € > 0 is arbitrary, we have I(t) — oo
ast — oo if p<1— e (B-d=a)T,

Next let us consider

dI
dt

—(d+ a)I+pI - pZI (nT7)6(t — to — nT)

n=1

In this case, we have I(t) < I(t). By similar analysis we obtain that for
p>1—e ¥4 we have I(t) — 0 as t — oo. Since 0 < I(t) < I(t), we
have that I(t) — 0 as well, which concludes the proof of Theorem (6.2).

We note that the assumption b > d guarantees that the threshold p} for I(?)
is greater than pj.

Now, we consider the behavior of I(t) when p < 1 — e~(8=5=)T 1In this case,
i(t) approaches an endemic periodic solution #4(¢), for which #(nT+) = &,
where ¢} is the nonzero fixed point of the map F in (10) . We introduce

Hp) = (1-p)e® ¢ (LT 0 e vor panss

where, i is given by (11). The definition of H(¢) is motivated later in the
proof of the following theorem, which describes the dynamics of I(¢) under
the conditions p < 1 — e~¥=4=7T and B > (b+ a).



Theorem 3: Consider the system of equations (1)-(3) with b > d > 0, 8 >
(b+ ) and all other parameters non-negative. Let p < 1 — e~ B=0=T I this
case we have:

(1) If H(p) < 1, then the total infected population has the asymptotic behavior
I(t) — 0.

(2) If H(p) > 1, the total infected population has the asymptotic behavior
I(t) = oo.

Proof: From (2) we have that:

dr s
EE:_@+aﬂ+%vum§:nm"w@—nﬂ.

n=1

Substituting s(t) = S(t)/N(t) we obtain

O = Bs()] — (a+ )T —p >~ I(nT")6(t — nT),
then
dl . s -
o= (B~ i(t) ~ (a+ )~ p Y I(nT)s(¢t — nT).

n=1

We solve this equation for (n — 1)T <t < nT and obtain

Y

—(n—1) .
I(t) = [Oefot P Ba-im)-(atddr  pere Iy=I((n—1)TT).

From Theorem 1, we know that i(t) approaches an endemic periodic solution
i*xo(B—b—a)T
126

i5(t), with 5(nT*) = 43. Thus, i(7) is approximately TS @ D)
Bb-a'2

(n—1)T < 1 < nT for large n.

We consider I(nT"), the number of infective individuals right after the re-
movals. Then we obtain the following:

l;e(ﬂ—b—a)-r

IS
(B-d-a)T "0 plplzizel > Irra-

— dr
I(nT+)=(1—p)lye 7755 )

(1- p)IOe(B_d_“)T(#i;(e(ﬂ_b_o‘)T —-1)+ 1)6%[1.
-b—«

Hence, the function



—d—a B —a —b—a T
H(p)=(1 —p)e(ﬂ d )T(mh(e(ﬂ b-a)T _ 1)+ 1)7-=
determines the behavior of I(t). The above calculation shows that I(nT*) =
IyH(p), where Iy = I((n — 1)T'"). Repeated application of this relationship
yields

I(mT*) = Iy(H(p))™ 1) m > n.

Hence, if H(p) > 1 for a particular p, p < 1 — e=(B=8=)T then I(t) — oo as
t — oo for this value of p; and if H(p) < 1 then I(t) — 0.

In the next section we show the examples for different possible behaviors of
this function.

2.8 Total Population

We presented a complete analysis of the behavior of the fraction of infective
individuals i(¢) and the total infective population I(¢). Using this information
we can determine the dynamics of the total population N(t) for various values
of p. The dynamics of the solutions of (1)-(3) can be summarized as follows
for various values of the parameter p.

p i(t) I(t) N(t)

p < pj and H(p) <1 | i — endemic periodic solution | I -0 | N — 0
p < pf and H(p) > 1 | i — endemic periodic solution | [ — oo | N — o©

p; <p<p; 1—0 I 50| N—o

D> D5 1—0 I—-0 | N—>x

Table 1: Dynamics of solutions of (1)-(3) for various values of parameter p,
withb > d, B> (b+ )

Therefore, we have obtained a complete description of the asymptotic behavior
of the solutions to our proposed model.

As noted before, based on the behavior of the function H(p) we can have
different scenarios. The following examples depict some interesting cases. We
note that the parameter values in the examples are for illustration purposes,

10



they do not necessarily represent real-life situations. We use the following
notation for the threshold values of p in the interval [0, 1]

pp, = value of p where H(p) = 1 and H(p) is decreasing,
ph, = value of p where H(p) = 1 and H(p) is increasing,

pi=1—e BT the threshold of the fraction of infected population i(t),

pi=1—e 4= the threshold of the total infected population. I(¢)

Example 1: We consider the case when first H(p) < 1 and then H(p) > 1,
hence pp, does not exist in [0, 1]. This scenario can be described, for exam-
ple, by the following parameter values: § = 2.25, b = 04, d = 0.1, a =
0.8, and T = 1. The thresholds for this example are as follows: p,, =
6197, p; = .650062, and pj = .74076. First, we graph the case when
p = .5 < py,. Hence, we should obtain that ¢ converges to the endemic periodic
solution, I — 0 and N — 0. The results of the numerical simulation for this
case are depicted in Figure 2.

T
07 e e I
/ E S
/ \
0651 ! i(t) without removal 4 \
\
! §

i(t) with pulse removal a0H A

o6 \

3 10 without removal
\

30 \

N

\

FRACTION OF INFECTIVES i(t)
TOTAL INFECTIVES I(t)

A
20| I(tfwith pulse removal
\

N() with pulse removal

\
\
\
. N(t) without removal
A
\

Ay
A

TOTAL POPULATION N(t)
@
3

5 10 15 20 25 30
TIME

Fig. 2. Example 1 for p = 0.5
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If pp, < p = .63 < 4y, then 7 converges to the endemic periodic solution,
I — o0, and N — oo.

08 T T T T T T T T T 800 T T T T T T T T T
s i
07, / 700
(
)
)
06 7 600
_ | i(t) without removal
g |
$osl! =
Losh 1 =500
=
3 =
g 1 5 It with pulse removal
g 04 ] W 400
e
& £
z o
e} i(t) with pulse removal ks
I i =
Qo3 0300
Q / -
4
&

o
~
T
L
»
8
8

1(t) without removal

0.1 f 100

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
TIME TIME

2500

2000

1500
N(t) with pulse removal

TOTAL POPULATION N(t)

1000

N() without removal

10 20 30 40

Fig. 3. Example 1 for p = 0.63
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Thus, we can see that the larger pulse removal p in this case has the effect of
'saving’ the population in the sense that now N(¢) — oo as t — oco. At the
same time I(t) — oo also, i.e., the disease is sustained in the population as
shown in Figure 3.

If 2p, <p=.7 <pj, theni — 0, = oo, and N — co. The larger percentage

0.

L -7 i
0.7 , /
/
/ 200
/

i(t) without removal

° °
>
T

FRACTION OF INFECTIVES i(t)
°
TOTAL INFECTIVES I(t)

(t) without removal I(t) with pulse removal

35 40
TIME

TOTAL POPULATION N(t)

20

Fig. 4. Example 1 for p = 0.7

of removed infective individuals now results in the fraction of the infected
population i(¢) — 0, while I(¢), N(t) — oo (see Figure 4).

If p=0.77 > pj theni — 0, I — 0, and N — oo. Figure 5 shows that the
removal of 77% of infected individuals drives the total number of infective in-
dividuals to zero, while the population is growing without bounds. Thus, with
this control strategy the disease is eradicated while population is flourishing.
(This is in contrast with the no-control (p = 0) case where the population is
eradicated together with the disease.)

3 SI model with logistic dynamics

In this section we study an SI model with pulse removal that has a logistic
underlying dynamics for the total population S+ I. This is considered a more

13



°

FRACTION OF INFECTIVES i(t)
° °

\
L 10 without removal

TOTAL INFECTIVES I(t)
©
&

L
14 16 18 20 0 5 10 20 25 30 35

3500

3000

2500

N
5
8
8
T

N(t) with pulse removal
1500

TOTAL POPULATION Nt

1000

N(t) without removal

0 2 a 6 8 10 12 14 16 18 20
TIME

Fig. 5. Example 1 for p = 0.77

realistic approach than the exponential dynamics especially for longer time
intervals. We consider the model

ds BSI
— =bN —-d(1+rN)S — — 1
o b d(1+rN)S N (16)
dI ST >
O = @) + )1+ P2y S 1 )it - nT) (17)
n=1
N=S+1. (18)
This implies that the dynamics of the total population is given as
dN 9 > _
“= = (b—d)N —rdN* —al =p " I(nT")i(t - nT). (19)

n=1

The logistic dynamics is the result of the assumption that the death rate is an
increasing function of the total population in the form d(1 + rN), where r is
a small positive parameter. The following theorem describes the asymptotic
behavior of the infective and susceptible classes.

Theorem 4: Consider the system of equations (16)-(18) with b > 0, f— (b+
a) > 0 and all other parameters non-negative. We have:

14



(1) If p > 1 — e BT — p* then the disease free equilibrium (s,i) =
(1,0) always exists and it is globally asymptotically stable in the feasibility
region D. Moreover, I(t) — 0 and N(t) — &2 as t — oc.

(2) If p < p} then there exists a unique endemic periodic solution (i*,s*) and
this solution is globally asymptotically stable in D,. In this case I(t) and
N(t) both converge to a positive periodic function, so the disease stays
endemic in the population.

Proof: We proceed as in Section 2 and rewrite equations (16)-(18) in terms
of fractions of infected and susceptible classes. Thus we obtain

% —b(1—s)— (8- a)si+ gpi(lnfpzéf_))a(t — nT) (20)
% = (bt a)i+ Bsi+ ai® Zjl pz(”le(;i(_ng(ff)T))a(t _nT)  (21)

with feasibility set D = {(s,7) | s > 0,i > 0,s+i=1.}

We can see that equation (21) is the same as the one governing the behavior of
i(t) with exponential underlying population dynamics (7). Hence, our previous
results are directly applicable. Thus we have that for p > 1 — e~ (#=0-2) = o
i(t) — 0 as t — oo, while i(t) tends to a positive periodic function when
p < pi. Next we examine the behavior of I(t). The logistic dynamics of the
total population in (19) guarantees the boundedness of N, so i(t) — 0 implies
that the total number of infective individuals I(¢) tends to 0 as well. This in
turn implies that N(t) — %2 (the positive equilibrium of (19) with I = 0) as
t — 00. Thus in this case we have only one threshold quantity that separates
the asymptotic behavior of the infected and susceptible classes. In the case
when p < pi we have that i(¢) tends to a positive endemic solution *(¢).
Plugging in I(t) = i*(¢)N(t) into (19) yields that N(¢) also tends to a positive
periodic function. Figures 6 and 7 illustrate the behavior of the system for
p > pi and p < pj.
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Fig. 6. Logistic example for p > p}, infected class (left), total population (right)
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Fig. 7. Logistic example for p < pj, infected class (left), total population (right)
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